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Analytical and numerical investigations of the phase-locked loop with time delay
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We derive the normal form for the delay-induced Hopf bifurcation in the first-order phase-locked loop with
time delay by the multiple scaling method. The resulting periodic orbit is confirmed by numerical simulations.
Further detailed numerical investigations demonstrate exemplarily that this system reveals a rich dynamical
behavior. With phase portraits, Fourier analysis, and Lyapunov spectra it is possible to analyze the scaling
properties of the control parameter in the period-doubling scenario, both qualitatively and quantitatively.
Within the numerical accuracy there is evidence that the scaling constant of the time-delayed phase-locked
loop coincides with the Feigenbaum constantd'4.669 in one-dimensional discrete systems.
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I. INTRODUCTION

Many nonlinear dynamical systems in various scient
disciplines are influenced by the finite propagation time
signals in feedback loops. A typical physical system is p
vided by a laser where the output light is reflected and
back to the cavity@1,2#. But time delays also occur in biol
ogy due to physiological control mechanisms@3,4# or in
economy where the finite velocity of information processi
has to be taken into account@5,6#. Furthermore, realistic
models in population dynamics or in ecology include t
duration for the replacement of resources@7,8#.

All these different systems have in common that the
herent time delay may induce dynamical instabilities. N
merous experimental and theoretical studies have dem
strated this for the emergence of oscillatory behav
quasiperiodicity, chaos, or intermittency. But time-delay
feedbacks can also have the opposite effect. They have
been devised to stabilize previously unstable stationary st
or limit cycles @9–11#. In particular, this method allows to
control or to prevent undesirable chaotic behavior in a tim
continuous way. In comparison with the time-discre
method of Ott, Grebogi, and Yorke@12# it can be easily
implemented as it relies on less information of the dynam
system.

The choice of a paradigmatic model system for analyz
the fundamental properties of delay-induced instabilities
determined by several practical conditions. On the one ha
it should be guaranteed that all observable instabilities
purely a result of time delays. On the other hand, the dyn
ics should be governed by a simple model equation and
low for a quantitative comparison between theory and
periment. These conditions are fulfilled, for instance, by
Mackey-Glass model@3# that describes quite successfully th
anomalies in the regeneration of white blood cells. Howev
the underlying nonlinear scalar delay differential equat
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necessitates three effective control parameters to accoun
the experimental data.

In this paper, we report about analytical and numeri
investigations of the rich dynamical behavior of anoth
model system that was proposed some time ago by Wisc
et al. in Ref. @13#. It represents the first-order phase-lock
loop ~PLL! with time delay that synchronizes the phases
two oscillators. In comparison with the Mackey-Gla
model, this system has the advantage that it involves on
single effective control parameter instead of three. Additio
ally, it can be realized electronically under well-defined co
ditions. Furthermore, an extension of the PLL with time d
lay is capable of describing sensibly physiological cont
experiments@14#.

The experimental setup for the electronic system o
first-order PLL is shown in Fig. 3 of Ref.@13#. In many
applications the PLL serves for synchronizing the phases
reference oscillator and a voltage-controlled oscilla
~VCO!. Thereby the frequency of the output signal of t
VCO depends linearly on the input signal. The output sign
of both oscillators are multiplied by the aid of a mixer. Th
induced high-frequency components are then eliminated b
low-pass filter. The resulting signal is fed back to the input
the VCO. A delay line between the VCO and the mixe
implemented analogously or numerically, induces the ti
delayt>0. The dynamical variable of interest is the pha
differenceq(t) between both incoming signals of the mix
~compare with Fig. 3 of Ref.@13#!. Under quite simple as-
sumptions, it becomes possible to derive a nonlinear sc
delay differential equation for this phase difference@13#:

d

dt
q~ t !52K sin@q~ t2t!#. ~1!

The parameterK>0 denotes the so-called open loop gain
the PLL. Performing an appropriate scaling of the time co
verts the PLL equation~1! to its standard form

d

dt
q~ t !52Rsin@q~ t21!#, ~2!
©2003 The American Physical Society05-1
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where the two parameterst,K are reduced to one effectiv
control parameter

R5Kt. ~3!

Thus varying the delay timet corresponds to changing th
control parameterR. In this paper, we analyze both analy
cally and numerically the rich structure of delay-induced
stabilities of the PLL equation~2!. In Sec. II, we derive the
normal form of the Hopf bifurcation by applying the multip
scaling method. The emerging periodic orbit is confirmed
Sec. III by numerical simulations. In Sec. IV, we study
detail the period-doubling scenario beyond the Hopf bifur
tion with phase portraits, Fourier analysis, and Lyapun
spectra.

II. MULTIPLE SCALING METHOD

Combining the mathematical methods of@15,16# for delay
differential equations with the synergetic system analy
@17–21#, it was shown in Ref.@13# that a Hopf bifurcation
@22–24# occurs in the PLL equation~2! at the critical value
Rc5p/2. In the following we rederive the normal form o
this Hopf bifurcation by using the multiple scaling metho
@25#. It represents a systematic technical procedure to ded
the normal form by using an ansatz how the respective qu
tities depend on the smallness parameter

«5
R2Rc

Rc
⇔R5Rc~11«!. ~4!

Although the multiple scaling method has been origina
developed for ordinary or partial differential equations@26–
30#, it can be also applied to delay differential equations~see,
for instance, the treatment in Ref.@31#!.

We start with discussing some properties of the Hopf
furcation. At first, we mention that the amplitude of th
emerging periodic solution has a characteristic«1/2 depen-
dence from the smallness parameter«, as can be deduce
from the linear stability analysis already presented in R
@13#. Furthermore, the trajectory approaches the limit cy
slowly near the instability due to the phenomenon of criti
slowing down. Thus the oscillatory solutionq(t) of the PLL
equation~2! is based on two different time scales. Thefast
time scale is provided by the periodT52p/V of the oscil-
latory solution, whereas theslow one characterizes the am
plitude dynamics in the transient regime. Both time sca
are separated by a factor of the smallness parameter«, as
follows again from the linear stability analysis@13#. These
considerations lead to the following ansatz for the oscillat
solution after the Hopf bifurcation:

q~ t !5qstat1«1/2@q0
1~ t8!eiVt1q0

2~ t8!e2 iVt#

1«@q2
1~ t8!e2iVt1q1~ t8!1q2

2~ t8!e22iVt#

1«3/2@q4
1~ t8!e3iVt1q3

1~ t8!eiVt1q3
2~ t8!e2 iVt

1q4
2~ t8!e23iVt#1O~«2!. ~5!
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Here the first time scalet and the second time scalet8 are
related via

t85«t, ~6!

where the smallness parameter« denotes the deviation from
the bifurcation point according to Eq.~4!, and the respective
amplitudes have the properties

qk
6~ t8!5qk

7~ t8!* , k50,2,3,4; q1~ t8!5q1~ t8!* .
~7!

Now we insert our ansatz~5! in the PLL equation~2!. By
doing so, we have to take into account that the slowly va
ing amplitudesqi

6(t8) have the time derivative

d

dt
qi

6~ t8!5«
d

dt8
qi

6~ t8! ~8!

and that their time delay results in the expansion

qi
6~ t82«!5qi

6~ t8!2«
d

dt8
qi

6~ t8!1O~«2!. ~9!

The strategy is then to compare all those terms with e
other which have the same power in the smallness param
«. Thereby we have to guarantee that in each order the
spective Fourier coefficients compensate each other.

~1! In the lowest order«0 we have only the frequency 0
which leads to the equality

Rcsin~qstat!50. ~10!

This fixes the stationary state to be

qstat5 lp, l 50,61,62, . . . . ~11!

In the following we restrict ourselves to considering the r
erence stateqstat

I 50 as the other oneqstat
II 5p turns out to be

unstable for all values of the control parameterR.
~2! The order«1/2 contains only the frequency6V with

the condition

6 iVq0
6~ t8!52Rce

7 iVq0
6~ t8!. ~12!

As the amplitudesq0
6(t8) should not vanish, we conclude

2Rce
7 iV7 iV50. ~13!

This condition coincides with the transcendental characte
tic equation~98! of the linear stability analysis of Ref.@13#,
if the eigenvaluesl at the instability are identified accordin
to l5 iV. The real part of Eq.~13!,

cosV50, ~14!

leads to the frequency
5-2



th

e
to

-

r-

r-
-

al
e
a
-

er

n

sis

od

me

e

r

he
ar
, in
of
de
ion

m-
y
h
od

ANALYTICAL AND NUMERICAL INVESTIGATIONS O F . . . PHYSICAL REVIEW E 67, 056205 ~2003!
V5
p

2
, ~15!

whereas the imaginary part results in the critical value of
control parameter:

Rc5
p

2
. ~16!

~3! The order« involves two frequency components. Th
Fourier coefficients of the frequency 0 immediately lead

q1~ t8!50, ~17!

and for the frequency62V we obtain

62iVq2
6~ t8!52Rce

72iVq2
6~ t8!, ~18!

which reduces due to the characteristic equation~13! to

q2
6~ t8!50. ~19!

~4! Also the order«3/2 consists of two frequency compo
nents. For the frequency6V we read off

~12Rce
7 iV!

d

dt8
q0

6~ t8!5~2Rce
7 iV7 iV!q3

6~ t8!

2 1
2 Rce

7 iV@2q0
6~ t8!

2q0
6~ t8!2q0

7~ t8!#. ~20!

The factor in front ofq3
6(t8) vanishes because of the cha

acteristic equation~13!. Thus the functionsq3
6(t8) are not

determined in this order, they only follow from the next o
der«2 and the frequency6V. Taking into account the char
acteristic equation~13!, we yield from Eq.~20! the normal
form of the order parameter equation:

d

dt8
q0

6~ t8!5A6q0
6~ t8!1B6q0

6~ t8!2q0
7~ t8!. ~21!

There the parametersA6 andB6 are defined by

A65
6 iRc

16 iRc
, B652

A6

2
. ~22!

Note that the normal form~21! of the multiple scaling
method and the normal form of the synergetic system an
sis in Ref. @13# do not coincide, however, they can b
mapped into each other using an appropriate coordin
transformation@25#. Correspondingly, we obtain for the fre
quency63V

63iVq4
6~ t8!5 1

6 Rce
73iV@q0

6~ t8!326q4
6~ t8!#, ~23!

which reduces due to Eqs.~13!, ~15!, and~16! to

q4
6~ t8!5 1

24 q0
6~ t8!3. ~24!
05620
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As the functionsq3
6(t8) andq4

6(t8) are of the order of«3/2

according to the ansatz~5!, they are irrelevant for the order«
in which we are interested. It remains to solve the ord
parameter equations~21! and~22! by using polar coordinates

q0
6~ t8!5R~ t8!e6 iw(t8). ~25!

The resulting stationary solution turns out to be

R~ t8!5A2 ~26!

together with the phase

w~ t !5w0 . ~27!

Thus we conclude from Eqs.~5!, ~15!, ~17!, ~19!, ~26!, and
~27! that the oscillatory solution after the Hopf bifurcatio
has the frequency

V~«!5Rc1O~«2! ~28!

and reads

q~ t !5c0~«!1c1~«!cos@V~«!t1c1#1c2~«!

3cos@2w~ t !1c2#1O~«3/2!, ~29!

where the respective coefficients are given by

c0~«!501O~«2!, c1~«!5A8«1O~«3/2!,

c2~«!501O~«2!. ~30!

It coincides with the result of the synergetic system analy
in Ref. @13# up to the order«. Although we restrict ourselves
to this order, the systematics of the multiple scaling meth
is obvious, thus an extension of the ansatz~5! to higher or-
ders is straightforward, but the calculation would beco
quite cumbersome.

III. NUMERICAL VERIFICATION

In order to numerically verify our analytical result, w
integrated the underlying PLL equation~2!. By doing so, we
varied the control parameterR in the vicinity of the instabil-
ity Rc5p/2 in such a way that the smallness paramete«
5(R2Rc)/Rc took 200 equidistant values between 1025

and 1021. We used a Runge-Kutta-Verner method of t
IMSL library as an integration routine and performed a line
interpolation between the respective values. In particular
the immediate vicinity of the instability the phenomenon
critical slowing down led to a transient behavior. To exclu
this, we iterated the discretized delay differential equat
for each value of the control parameter at least 106 times.
Afterwards we calculated the power spectrum with a co
plex fast Fourier transform~FFT! so that the basic frequenc
V of the oscillatory solution could be determined with hig
resolution. Then we performed a real FFT with the peri
T52p/V of the simulated periodic signalq(t)5q(t1T):
5-3
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TABLE I. Comparing the analytical and the numerical values for the frequencyV(«) and the Fourier
coefficientsc0(«), c1(«), c2(«) of the oscillatory solution of the PLL equation after the Hopf bifurcatio

Investigated Analytical Analytical Numerical
quantity expression value value

A A(0)

dA

d«
U
«50 A(0)

dA

d«
U
«50 A(0)

dA

d«
U
«50

V
p

2
0 1.5708 0.0 1.5708 1028

c0 0 0 0.0 0.0 2331024 2231023

ln c1
1
2 ln 8 1

2 1.0397 0.5 1.0356 0.4999
c2 0 0 0.0 0.0 231024 631022
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q~ t !5
a0

2
1 (

k51

`

@akcos~kVt !1bksin~kVt !#. ~31!

The Fourier coefficients follow from integrations with re
spect to one periodT52p/V:

ak5
2

TE0

T

dt f~ t !cos~kVt !, k50,1, . . . ,`;

bk5
2

TE0

T

dt f~ t !sin~kVt !, k51, . . . ,̀ . ~32!

From Eq.~31! follows then the spectral representation

q~ t !5c01 (
k51

`

ckcos~kVt1fk! ~33!

with the quantities

c05
a0

2
, ck5Aak

21bk
2, fk52arctan

bk

ak
,

k51, . . . ,̀ . ~34!

Thus our analytical results~27! and~29! can be interpreted a
the first terms within a spectral representation~33!, where the
frequencyV52p/T and the Fourier coefficientsc0 , c1 , c2
are given by Eqs.~28! and ~30!. Analyzing the Hopf bifur-
cation with a FFT, we numerically determindedV, c0 , c1 ,
c2 as a function of the smallness parameter«. Comparing
the respective numerical and analytical results, we obse
some deviations for small and for large values of the sm
ness parameters«. The former are due to the phenomenon
critical slowing down, i.e., the system stays longer in t
transient state when the instability is approached, and
latter arise from the neglected higher-order corrections in
analytical approach. Therefore we restricted our numer
analysis to the intermediate interval@1025,1021# of the
smallness parameter«.

In Table I, we see that the analytical and numerical de
mined quantities agree quantitatively very well. Thus o
weakly nonlinear analysis for the delay-induced Hopf bifu
cation in the PLL equation is numerically verified up to«
05620
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'1021. However, this successfully tests only the order p
rameter concept for delay systems, as the lowest nonlin
term in the scalar delay differential equation of the PLL~2! is
a cubic one. Therefore we analyzed the Wright equation@32#
with a quadratic nonlinearity in a separate publication@33#,
where we could successfully test not only the order para
eter concept but also the slaving principle, i.e., the influe
of the center manifold on the order parameter equatio
Thus we demonstrated with the Wright equation the valid
of the circular causality chain of synergetics@17–21# for the
Hopf bifurcation of a delay differential equation.

IV. FURTHER NUMERICAL RESULTS

In the following we summarize various simulations whic
have been performed for the delay differential equation~2!
of a PLL with some initial functionq(t) for 21<t<0
@25,34#. In order to check the quality of the numerical r
sults, standard integration routines of the Runge-Kutta t
have been applied with different discretizations by a
equately taking into account the delay effects.

First, it turns out that the trajectoryq(t) is restricted for
all times to the interval@2p,1p# if the effective control
parameterR is increased from 0 to about 4.9. If the transie

FIG. 1. Phase portraits depicting several limit cycles:~a! R
53.5, ~b! R54.1, ~c! R54.105, ~d! R54.11.
5-4
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behavior has decayed, the resulting asymptotic dynam
could be classified as follows. For 0<R<p/2 there exist
two stationary states, a stable oneq150 and an unstable on
q25p. At R5p/2 a superstable Hopf bifurcation occu
where the previously stable stationary stateqstat

I 50 becomes
unstable and a new stable limit cycle emerges@13#. In the
rangep/2<R<3.77 this oscillatory solution shows a con
spicuous point symmetry with respect to the origin of t
phase portrait in Fig. 1~a!. This symmetry is broken atR
'3.77 as the limit cycle splits into two coexisting lim
cycles@35#. They are depicted in Fig. 1~b! as the asymptotic
dynamics of the initial functionsq(t)561 for 21<t<0,
respectively. Both coexisting limit cycles are symmetric
each other concerning the point symmetry with respect to
origin and remain stable up toR'4.9. Note that the insta
bility at R'3.77 was not detected during the initial inves
gations in Ref.@13# as there only Fourier spectra were an
lyzed.

Increasing the effective control parameter leads to a
ther bifurcation atR'4.105. Figure 1~c! illustrates that a
new limit cycle emerges with the initial functionq(t)52 for
21<t<0, which coexists for 4.105<R<4.11 with the two

FIG. 2. Power spectra indicating period doublings:~a! R
54.157, ~b! R54.165, ~c! R54.1725,~d! R54.173 75.
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other oscillating solutions. Also this new limit cycle exhibi
a point symmetry with respect to the origin of the pha
portrait. At R'4.11 this limit cycle splits into two new os
cillating solutions with the initial functionsq(t)562 for
21<t<0, so that the point symmetry is again destroy
@compare Fig. 1~d!#. It turns out that both of them pas
through a separate period-doubling scenario for 4.11<R
<4.175. This is shown qualitatively by the power spec
~see Fig. 2! for the first three period doublings. Each of the
bifurcations leads to a subsequent subharmonic and to co
sponding higher combination frequencies. The bifurcat
diagram in Fig. 3 is an overview over this period-doublin
scenario. It was obtained by Poincare´ sections of the trajec-
tories using the software packageANT 4.669 @41–43#,
whereby the Poincare´ conditions wereq̇(t)50 and q(t)
P@1,2#.

In order to analyze a period-doubling scenario more qu
titatively, it is advantageous to determine the the Lyapun
exponents of the underlying dynamics. In our case this
cessitates to use the common concept of the Lyapunov e
nents @36# and to extend it to delay differential equation
@25,37#. Thereby we have to take into account that their n

FIG. 3. Bifurcation diagram obtained by a Poincare´ section that

is defined by the conditionsq̇(t)50 andq(t)P@1,2#.
FIG. 4. The Lyapunov spectra illustrating self-similarity. Shown are the two largest Lyapunov exponentsl1 andl2.
5-5
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merical integration is based on a discretization procedure
a consequence, the determination of the Lyapunov expon
for time-delayed dynamical systems is reducible to the c
culation of the Lyapunov exponents for a high-dimensio
time-discrete mapping.

Figure 4~a! shows the two largest Lyapunov exponen
within and above the period-doubling scenario of the PL
The enlargement of Fig. 4~b! clearly reveals the self
similarity of the spikes and the characteristic scaling prop
ties. One of both the Lyapunov exponents always vanis
due to the moving reference frame. The zeros of the sec
Lyapunov exponent coincide with the critical values of t
effective control parametersR0 ,R1 ,R2 , . . . where a period
doubling occurs. Table II lists the first bifurcation points a
the scaling constants

dn5
Rn212Rn

Rn2Rn11
~35!

of the effective control parameter. Within the numerical a
curacy there is evidence that the scaling constantsdn con-
verge to the Feigenbaum constantd'4.669 as in the case o
one-dimensional time-discrete systems@38,39#. If we assume
this to be true then we can estimate the end of the per
doubling scenario,

R`5
dRn112Rn

d21
, ~36!

from the bifurcation points in Table II. The findingR`

'4.173 961 agrees quite well with the enlarged Lyapun
spectrum in Fig. 4~b!.

As typical for the period-doubling route to chaos, the
exists not only the period doubling scenario below the cr
cal value, that is, forR,R` , which ends at the critical value
R` with the emergence of a Feigenbaum attractor, but a
the band-merging scenario with periodic windows above
critical value, that is, forR.R` . As an example the periodi
behavior in the window 4.2095<R<4.215 was analyzed
more carefully. The phase portrait of Fig. 5~a! and the power
spectrum of Fig. 5~b! show that atR'4.2095 a limit cycle of
period 3 emerges. AtR'4.2115 it starts to pass through
period-doubling scenario@see Fig. 5~c!#. Finally, at R
'4.213 a chaotic attractor emerges whose power spec
in Fig. 5~d! clearly reveals the structure of the limit cycle

TABLE II. Bifurcation points of the period-doubling scenario

n ParameterRn

Period before
bifurcation dn

0 4.1586531025 1
1 4.17056531025 2 4.636231021

2 4.17326531025 4 4.496531021

3 4.1738026531027 8 4.816431021

4 4.17392726231027 16 4.7661021

5 4.173953562.531027 32 4.466331021

6 4.17395946531028 64 4.726431021

7 4.1739606562.531028 128
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period 3. This chaotic regime ends atR'4.2405 when a
global bifurcation or a transition to transient chaos occu
For 4.2405<R<4.85, phase portraits and power spec
show that only those limit cycles coexist which emerged
R'3.77. At R'4.85 two new limit cycles of period 2 are
generated, which coexist for 4.85<R<4.90. For 0<R
<4.90 the dynamics has the characteristic property that
state space is divided in separate intervals@(m21)p,(m
11)p# with m50,1,2, . . . . In each of these intervals oc
curs the dynamical scenario that has been described so fa
R'4.90 it happens for the first time that previously sep
rated intervals are linked together, so that a new dynam
behavior becomes possible. For 4.90<R<5.30, Figs. 6~a!
and 6~b! show that there exist, for instance, limit cycles
period 2 in different intervals although the constant init
function q(t)522 ~dashed dotted!, 21 ~dashed!, 1 ~dot-
ted!, and 2 ~solid! was chosen in the interval@2p,1p#.
Thus the transient dynamics occurs in different interva
whereas the asymptotic dynamics is restricted to one of th
intervals.

FIG. 5. Analyzing the periodic window at 4.2095<R<4.215:
~a,b! R54.211, ~c! R54.2115,~d! R54.213.

FIG. 6. Analyzing the regimeR.4.90: ~a!,~b! R54.95, ~c!,~d!
R56.
5-6
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ANALYTICAL AND NUMERICAL INVESTIGATIONS O F . . . PHYSICAL REVIEW E 67, 056205 ~2003!
At R'5.30 occurs another instability to chaotic behavi
However, now the chaotic dynamics is no longer restricted
one of the above mentioned intervals, but it relates the p
viously separated intervals. For a certain time the sys
dynamics remains restricted to one of these intervals
moves then to the next interval@see Figs. 6~c! and 6~d!#.
Thereby the time duration of the system within one inter
differs from interval to interval. Such a dynamics is call
phase slippingor cycle slipping@13#. All numerical investi-
gations aboveR'5.30 show that only the phase slippin
behavior is stable. Analyzing the Lyapunov spectruml1
>l2> . . . , the Lyapunov dimension

DL5 j 1

(
i 51

j

l i

ul j u
, (

i 51

j

l i>0, (
i 51

j 11

l i,0 ~37!

is found to increase linearly with the control parameterR
~compare Fig. 7!. Note that also other time-delayed dynam

FIG. 7. The Lyapunov dimensions of the chaotic attractors
creasing linearly with the effective control parameterR.
.

ls
,

l

tt.
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.
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cal systems possess chaotic attractors where the envelo
the Lyapunov dimensionDL is proportional to the time delay
t @25,37,40#. To our knowledge a theoretical explanation f
this universal phenomenon, which could predict the syst
specific slopes from the respective delay differential eq
tions, is still lacking.

V. CONCLUSION

Here we have demonstrated by the example of the ph
locked loop with time delay that an adequate combination
different analytical and numerical investigation methods
veals different aspects of the rich dynamical behavior
time-delayed nonlinear systems. The multiple scal
method allows to derive the normal form for the Hopf bifu
cation. Phase portraits resulting from different initial fun
tions are capable of detecting the splitting of a limit cyc
indicating thereby symmetry-breaking bifurcations. A peri
doubling is qualitatively indicated in the power spectru
whereas the Lyapunov spectrum allows more quantita
statements. In this way we found, within the numerical a
curacy, evidence that the period-doubling scenario in
phase-locked loop with time delay is governed by t
Feigenbaum constantd'4.669.
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